碳纤维成型工艺及瓶颈探讨

  碳纤维(CF),是一种含碳量在95%以上的高强度、高模量纤维的新型材料,由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维质量轻,强度高于钢铁,具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。碳纤维具有许多优良性能,轴向强度和模量高,密度低,耐超高温,耐疲劳性好,具有各种特性,适用于多种领域。

碳纤维分类简介 碳纤维主要分为粘胶基、沥青基和聚丙烯腈(PAN)基三大种类。PAN基碳纤维综合性能最好、生产工艺成熟简单、应用最广、产量最高、品种最多,是目前全球碳纤维市场的主流碳纤维产品。此外,市场上常见的碳纤维产品形态有连续长纤维和短切纤维两种,根据加工方法和最终制品的形状,可以衍生出各种不同形态的碳纤维制品。

碳纤维的机械性能会根据具体的型号、级别的差异而在一个很宽的范围内变动。在中国,已颁布了《聚丙烯腈(PAN)基碳纤维国家标准(GB/T26752-2011)》,将碳纤维分为高强、高强中模、高模与高强高模四种。

 另外,碳纤维的相关技术标准中,K表示碳纤维单丝的数量,如1K代表一束纤维丝里包含了1000根单丝。一般而言,1K、3K、6K、12K和24K的被称为小丝束;48K、60K、80K、120K及以上的则称为大丝束。小丝束碳纤维在工艺控制上要求更严格,主要应用于国防军工等高科技领域,以及体育用品。大丝束碳纤维成本相对较低,具有更高的性价比,目前主要应用于医疗器械、机电、土木建筑、交通运输和能源等工业领域。


3、PAN 基碳纤维的制作工艺流程分析

我们以目前市场主流的丙烯腈(PAN)基碳纤维产业链为例,完整碳纤维产业链包含上游的原油化工产业,中游的原丝加工、碳纤维相关产物以及碳纤维复合材料生产加工、核心机械制造以及下游的应用市场组成。PAN基碳纤维的制备流程从PAN原丝制开始,通过丙烯腈(AN)单体聚合再通过湿法或干湿法纺丝制得PAN原丝;经过预氧化(200~300℃)、碳化(1000~1500℃)、石墨化(2500~3000℃)的过程,使线性的聚丙烯腈高分子产生氧化、热解、交联、环化等一系列化学反应并除去氢、氮、氧等原子形成石墨态的碳纤维;再通过气相或液相氧化等表面处理赋予纤维化学活性,施加上浆剂进行上浆处理来保护纤维并进一步提高与树脂的亲和性;最后收卷包装形成碳纤维单向带,或再通过编制形成碳纤维织物输出向下游销售.


3.1 PAN原丝的制造工艺

碳纤维产业的研发初期,主要产品为普通腈纶碳纤维,但是这种制作工艺难以获得高力学性的碳纤维产品,只有使用专门经过优化的PAN纤维,才能提高碳纤维的性能。这种为了获得高性能碳纤维而专门优化后的PAN纤维,就被称为原丝。PAN原丝是制造碳纤维的原材料,原丝的性能可以在很大程度上决定碳纤维的性能,也就是说,如果想要获得性能优良的碳纤维,必须首先有性能优良的PAN原丝。PAN原丝的性能,从本质上来说主要取决于其中的PAN分子的结构和排列形式。其中PAN分子结构的控制主要集中在聚合工艺,而PAN分子的排列形式则主要在纺丝工艺中形成。

3.1.1 聚合工艺

用于制备碳纤维的PAN聚合物必须经过特殊的优化设计,其中关键的是聚合工艺的设计,因为这将直接影响到原丝中PAN分子的结构。丙烯腈聚合属于自由基加成反应是一个放热过程。丙烯腈单体每一次加成聚合都需要打开一个C=C双键,同时生成两个σ单键,从而放出热量。且得到的PAN纤维中PAN分子链规整度较好、结晶度较高,但纤维缺乏柔性,不利于后续工序进行。另外,PAN均聚物的预氧化初始温度较高,由于在预氧化初始阶段会产生放热反应,集中放热会导致原丝中PAN分子链的断裂,并形成大孔缺陷结构,影响生产工艺稳定性和碳纤维质量,是制作的难点之一。因此在实际生产过程中,通常将丙烯腈与一些共聚单体进行共聚,可有效地控制预氧化过程中的放热反应,在后续步骤中获得质量更高的碳纤维。衣康酸(IA)、丙烯酸甲酯(AA)、甲基丙烯酸甲酯(MAA)等是常用的共聚单体,这些共聚单体可调节纺丝溶液的可纺性。并改善凝固浴中的相分离过程。获得结构较为致密的PAN原丝。此外,在预氧化时可引发分子内环化作用,使环化反应由自由基型转化为离子型,并增加原丝的氧渗透性,有利于预氧化过程工艺控制。

丙烯酸酯中性共聚单体具有增塑作用,提高PAN的溶解性并改善溶液的流变性能,使其具备可纺性,同时改善预氧化过程中氧气向原丝中的渗透。而衣康酸等含羧酸基团共聚单体的存在可以改善PAN原丝凝固过程中凝固介质向纤维内部的渗透性,改善PAN 原丝凝固过程,提高凝固均匀性。此外,羧酸基团影响PAN原丝的预氧化难易程度、放热性能和碳产率。需要指出的是,共聚单体的存在也会影响PAN基碳纤维制备过程中的成环过程,从而影响碳纤维的结构和性能。因此,用于制备碳纤维的PAN树脂中共聚单体含量通常<5 。除了含量之外,共聚单体在PAN分子链上的序列分布对原丝结构均匀性、预氧化工艺稳定性乃至最终碳纤维的性能均会产生重要影响。因此,需要根据共聚单体特点,结合工艺过程控制以及聚合物设备的调整,实现共聚单体在 PAN 分子链上尽可能均匀分布,为制备高性能碳纤维奠定至关重要的物质基础。

PAN聚合溶液制备主要有一步法和两步法:一步法通常是丙烯腈在二甲基亚砜(DMSO) 中聚合,经脱单脱泡后直接用于PAN原丝制备;两步法通常采用PAN水相沉淀聚合,所得PAN粉体经水洗、干燥后再溶解于DMSO和二甲基乙酰胺(DMAC)等溶剂中制备纺丝溶液。中国大部分碳纤维生产厂家的PAN原丝制备采用一步法,而吉林化纤集团生产PAN原丝则采用两步法。两步法技术较难,且较一步法成本更高,且容易引入杂质导致聚合物粒径较大而不易制得高质量的PAN原丝,使用难度较大,所以目前使用企业较少。在广泛采用的DMSO溶液聚合一步法制备PAN原丝工艺流程中,基于聚合装备和技术传统,我国碳纤维生产厂家大都采用间歇或半连续聚合工艺流程。因为连续聚合的聚合釜内始终充满物料,并采用全混合方式,难以避免超长停留时间的分子链出现, 而如果改用间歇聚合法能够杜绝这一弊端。间歇聚合,即聚合主体过程在独立设备和时段内一次完成,进出料均为间歇过程,严格按批次操作。其生产过程与连续聚合的不同之处在于,配制好的原料助剂溶液按批次间歇送入第一聚合釜,不与任何已反应物料发生混合,在其中完成由单体到高分子长链的全过程,达到工艺所需的转化率(90 左右);此后的各工序与连续聚合没有大区别,但需要在适当位置增加贮存设备连接间歇和连续过程。相比于连续聚合工艺,间歇聚合为单釜聚合可以变条件少,操作弹性小。流程短,出现各种问题容易解决杜绝了超高分子量的丙烯腈链,获取的纺丝液质量更可靠,更适合我国碳纤维的生产情况。

3.1.2 纺丝原液的制备

纺丝原液是纺丝的原料,其性能直接关系到原丝的性能,因而对其有比较严格的限制。所谓的纺丝原液,是指溶液聚合后,通过一定的工艺过程脱除未反应的单体和体系中的微小气泡,调整聚合物到一定浓度的聚合物溶液。纺丝原液有两个需要注意的问题:第一是凝胶化。PAN聚合物溶液容易产生凝胶现象,通常储存温度越高,聚合物的浓度越大,凝胶产生的速度越快,因此防止凝胶是纺丝原液储存条件确定时需要主要考虑的问题;第二是纺丝原液的过滤。在纺丝之前,必须尽可能地除去纺丝原液中的固态杂物、未溶解的聚合物、聚合物凝胶等,否则会大大提高原丝和碳纤维制造过程中的断丝频率,严重者可能造成喷丝板堵塞,对生产的稳定性造成很大的影响。工业上通常采用两级过滤以提高滤芯的使用效率和寿命,滤芯的最小孔径为5μm,甚至为2μm。

3.1.3 纺丝工艺

在PAN原丝纤维的制备过程中,纺丝液从喷丝组件喷出,进入凝固浴后凝固成纤维状固体。对于初生的原丝纤维,其内部的PAN大分子几乎是无序排列的,这种无序排列不利于原丝拉伸强度的提高,从而直接影响碳纤维的性能。为了获取结构致密的PAN 原丝,必须对纤维进行牵伸,对原丝施加的牵伸倍率越高,原丝内的PAN大分子链的排列规整度越高,纤维的结构就越致密,越有可能获得高性能的碳纤维。

PAN基碳纤维的纺丝方法通常有熔融法、干法和湿法。由于PAN聚合物的分解温度与其熔融温度接近,因而一般在工业化生产中无法采用熔融纺丝。干法纺丝是最早工业化的PAN纺丝方法,利用干法纺丝可以获得致密的原丝,这对获取高性能的碳纤维是十分有利的,但由于其生产能力差,未能在碳纤维原丝领域获得工业应用。从生产性和设备的复杂程度考虑,目前湿法纺丝是工业上普遍采用的纺丝方法。

目前市场上的主流的湿法纺丝是指聚合物的凝固过程发生在液相中的纺丝方法。因而,喷丝板浸入在凝固浴中,纺丝原液通过喷丝板直接进入凝固浴的湿喷湿纺(wet jet wet spinning)和喷丝板不与凝固浴直接接触,纺丝原液从喷丝板喷出后首先经过一定距离的空气段,然后进入凝固浴中凝固,这种方法称为干喷湿纺(dry jet wet spinning),上述的两种方法都属于湿法纺丝。在国内,习惯将湿法纺丝仅指湿喷湿纺,而干喷湿纺有时候又被成为干湿法。与湿法相比,干喷湿纺技术可以明显提高在纺丝过程中的牵伸倍率,从而提高整体纺丝速度,更加方便调控纤维的结构形成过程以及其物理机械性能,在某些情况下还有利于溶剂回收和改善操作环境。这两种纺丝方法,在PAN基碳纤维原丝的工业化生产中都有应用,各有优劣。

国内目前T300碳纤维生产主要采取的是湿法纺丝,也就是原丝液从喷丝头喷出来,直接进入凝固液。这样纤维内部产生的孔隙和缺陷相应的增多,同时由于溶剂向外扩散受阻,在预氧化碳化阶段溶剂分子挥发,会留下很多缺陷。这些缺陷最终会遗传给碳纤维,造成碳纤维强度低。T700碳纤维的生产则采取了不同的路线,大多使用了干喷湿纺技术,就是原丝液从喷丝孔出来,不直接进入凝固液,而是先经过一段空气段在进入凝固液。因为聚丙烯腈溶液粘度大,需要在一定压力下才能喷出纺丝孔,原丝液从孔中出来就会膨胀,这个时候在牵伸的作用下,原丝液直径慢慢变细。同时由于表层还没有接触水,所以表层和芯部的收缩率是一样的,牵伸不会产生表面塌陷。这样会使纺制出来的原丝截面更规则,表层和芯部物相均匀,产生的缺陷相对较少。所以后续的预氧化和炭化遗传的缺陷也会少,因此T700碳纤维的强度就会比T300高。实际应用中,这两种方法各有优劣势,湿法在对相应生产工艺进行一定的优化后,也能生产出T700,T800强度的碳纤维原丝。湿法产品表面结构相对更利于与树脂等基体材料复合进而通过成型制造加工成复合材料构制件,但是生产效率相对较低会使生产成本比较高,因此更适合应用在对性能及其稳定性要求比较高的高端装备领域;干湿法工艺生产效率相对较高,生产成本更低,产品更适合应用在对性能要求不是很高但是更关心经济性的一般工业和民用领域以及以缠绕为成型工艺的应用领域。因此选择湿法产品或是干湿法产品,很多时候不是由生产者决定的,而是由最终是由用户决定的。

3.2 碳纤维的制造工艺

碳纤维制造过程核心是将前述纺丝过程获得的PAN原丝经过一系列高温热处理工程转变为碳纤维的过程。碳纤维生产速度与原丝生产速度差别很大,国际的干喷湿法的速度最高已经到1000米/分,国内也达到了500米/分,但是碳纤维则基本小于20米/分。因此,这两个过程无法组织成一条连续的生产线,而只能分为两个相互独立的部分。在整个碳纤维制备过程中,高温处理设备是碳纤维生产线中最为核心和关键的设备, 设备的稳定性和可靠性对碳纤维生产线的连续运行和碳纤维的产品性能具有直接的 影响。整体来看,我国的高温技术和高温设备与国际先进水平相比,仍然具有一定的差距,国内新建的碳纤维生产线中,多数是采用国外进口的高温设备。

3.2.1 预氧化

预氧化是指在200-300℃的温度下,在氧化性气氛中施加一定的张力,对PAN原丝进行缓慢温和的氧化,通过在PAN直链基础上形成大量环状结构来达到可以耐高温处理的目的。预氧化后得到的纤维(一般为预氧化纤维)的密度可以提高到1.3g/m以上。通常为了达到这样的密度要求,需要纤维在氧化炉中的停留时间长达1h以上。因此, 预氧化过程是碳纤维制造全过程中最耗时、耗能的工序。所用的氧化性气氛从经济上考虑自然是空气最佳,其他一些氧化性气体如氧气、二氧化氮、二氧化硫、臭氧等也会在工业或实验中得到应用。

预氧化纤维的结构均质是制备高性能碳纤维的前提,因为原丝预氧化过程中形成的纤维结构和缺陷都会遗传到碳化阶段,会最终影响碳纤维的各方面性能。氧化过程中的工艺参数主要包括温度及其梯度分布、预氧化气氛、预氧化时间、牵伸力等。碳纤维的芯部模量与纤维中皮层结构致密性和取向度有关,其中疏松而排列紊乱的预氧化纤维结构,其芯部模量较低。一般来说,纤维预氧化的时间短,皮层结构薄;预氧化时间较长时,生成碳纤维的皮层结构较厚。预氧化的生产工艺使用的相关参数低(如牵引力、温度等),加工时间长,则不易形成明显的皮芯结构,但相对的生产效率较低。在生产碳纤维的全过程中,防止纤维皮芯结构给碳纤维结构带来两相性现象是制取均质碳纤维的重要因素。

其中热风循环系统是工业预氧化炉中技术含量最高的部分,也是不同预氧化炉生产商提供的预氧化炉中差别最大的部分。热风循环系统直接形成预氧化炉内部的等温区域,因此对炉体内部工作空间的温度均匀性有决定性的作用。PAN纤维的预氧化过程是一个放热过程,在预氧化过程中会产生大量的反应热,这些热量如果不能及时转移排除,会造成蓄热和局部过热,从而影响纤维的氧化均一性,严重的甚至会造成纤维烧断乃至起火燃烧。因而热风循环系统在设计时必须考虑这一点,在恒温区,温度波动最好控制在±2℃以下,需要通过对风量、风速、风向等进行严格的计算与巧妙的设计,来实现炉体内部温度的均一。此外,预氧化的时间也和成本直接挂钩,改进预氧化技术,减少碳纤维预氧化时间也是目前预氧化相关工艺的发展方向之一。目前我国鲜有企业制造的预氧化炉能把这所有相关指标全部做好,这也是我国碳纤维企业和世界龙头碳纤维企业的重要差距之一。

3.2.2 碳化和石墨化

预氧化纤维要紧接着进行碳化过程。碳化过程是将经过预氧化,在高温下不会燃烧的预氧化纤维在氮气护下于300-1500℃的高温中进行处理,在高温的作用下脱除大部分非碳纤维元素的过程。在碳化过程的初期,300-400℃的区间内,PAN直链发生断裂, 开始进行交联反应;400-900℃区间,PAN的热分解反应开始,释放出大量的小分子气体,石墨结构开始形成;900℃以上,残存的氮原子以氮气的形式开始脱落,碳元素含量迅速升高,石墨构造发达,纤维整体发生收缩并形成具有良好机械性能的碳纤维。处理后的纤维中碳元素质量分数至少达到92 以上,总计失重55 -56 。

石墨化过程并不是碳纤维制备的必须过程,它是一个可以选择的过程。在传统工业化制备方法中,如果期望获得高弹性模量的碳纤维,则进行石墨化过程;如果期待获得高强度的碳纤维,通常则不需要进行石墨化过程。石墨化过程的处理温度在2000℃以上,时间很短,只要几秒即可,为了防止在此高温下氮气与碳元素反应,保护气氛需要采用惰性更强的氩气。保护气氛的作用第一是保持低高温炉内正压,第二个作用就是带走有毒的热解产物。经过石墨化后,碳纤维中的碳元素含量可以达到99.9 以上, 因此一些地方将这样的碳纤维称为石墨纤维。高温使得纤维内部形成发达的石墨网面结构,牵伸则使这些石墨结构规整化,两者对最终纤维的性能都有重要的影响。

3.2.3 表面氧化处理

经过碳化的纤维,表面基本由碳原子组成,因而具有很强的化学惰性,但是纤维需要与树脂等基材复合,要求其表面具有适当的活性,因而要通过表面氧化处理过程提高纤维表面的含氧活性官能团的数量。氧化方法有很多种,工业上主要使用电化学氧化法。电化学氧化处理利用了碳纤维的导电性,将碳纤维作为阳极置于电解质溶液中, 通过阳极电解所产生活性氧氧化碳纤维表面,从而引入含氧官能团,以提高复合材料界面粘接性能。碳纤维表面氧化程度可以通过改变反应温度、电解质浓度、处理时间和电流大小来进行控制。电化学氧化所使用的电解质有硝酸、硫酸、磷酸、醋酸、碳酸氢铵、氢氧化钠、硝酸钾等。目前最常使用的是碳酸氢铵等铵类电解液,因为其不腐蚀设备,且电解效果较好。

3.2.4 上浆剂处理

碳纤维表面是惰性的类石墨结构,虽然这样的结构使其具有良好的耐腐蚀性,但同时也使得纤维与树脂之间的浸润性降低。因此上浆剂的存在能有效地使碳纤维被树脂充分浸润,减少预浸料中的空气含量,降低复合材料的孔隙率。上浆剂是均匀覆盖在碳纤维表面的一层薄薄的树脂层,其在纤维中的质量分数为0.3~1.2,尽管其含量很低,但对碳纤维的性能及其编织布、预浸料的制备、复合材料的性能都有重要的作用。根据不同的规格,一束碳纤维中包含成千上万根碳纤维单丝,因此上浆剂的首要功能就是将大量的单丝集束成一束,防止纤维起毛松散;另外碳纤维在生产和编织的过程中会与多个滚轴摩擦,如果没有上浆剂层的保护,碳纤维单丝很容易断裂,从而使纤维本体的强度降低。目前上浆剂主要分为三类:溶液型上浆剂、乳液型上浆剂以及水溶性上浆剂,市面上目前主要应用的是乳液型上浆剂。

3.3 碳纤维预成型织物生产

预成型物的定义是在被置入模具进行树脂含浸之前,根据设计好的结构细节而提前赋型的碳纤维增强体。目的在于防止后续工业生产中对碳纤维造成损伤,以及提高在厚度方向上的强度。碳纤维预成型物有很多种类,用编织方式分类可以分为梭织物, 编织物,针织物等。梭织物是由两条或两组以上的相互垂直纤维束,以90度角作经纬交织而成织物,纵向的纤维束叫经纱,横向的纤维束叫纬纱。编织物是提供纤维束的锭子在圆周方向移动的同时,将纤维素引出,引出的纤维素通过在垂直方向组装,不断在长度方向上倾斜延伸形成彼此交叉的结构。针织物是由纱线顺序弯曲成线圈,而线圈相互串套而形成织物的过程,可以横向或纵向地进行,横向编织称为纬编织物, 而纵向编织称为经编织物。针织物具有良好的伸缩性和弹性,其生产过程自动化程度高,需要的人工数量少,是在3D织物的重要编织方式之一.

3.4 碳纤维中间成型产物

通常所说的碳纤维中间成型产物,包括预浸料,预混料,CFRTP颗粒,SMC和BMC等, 各自用于各种不同的目的和用途。其中,预浸料和SMC是最为重要、使用最广泛的两种中间产物。预浸料是用来满足制造高精度、高性能的纤维增强复合材料的前置要求, 通常使用环氧树脂作为基体树脂。SMC等则更加重视在产品制造过程中的成型性,而且使用的增强纤维均为短切纤维。随着碳纤维在一般工业领域,特别是汽车工业内的应用展开,SMC配合模压成型技术一起高效率、低成本的优势,成为备受关注的一种成型技术.

3.4.1 预浸料

预浸料是将增强纤维与树脂一体化后,以提高品质和作业效率为目的的二次加工产品。主要作为高精度、高性能纤维增强树脂材料的成形中间基材使用。以CFRP(碳纤维复合材料)为代表的先进复合材料中,过半数都是通过预浸料成形的。预浸料作为复合材料的中间材料是把增强纤维浸渍在基体中所制成的预浸料片材产品,所用的增强材料主要有碳纤维、玻璃纤维、芳族聚酰胺纤维等。所用的基体主要有聚酯树脂、环氧树脂、热可塑性树脂等。预浸料的制备即用树脂浸渍纤维或织物,有很多的生产工艺方法,因树脂基体的不同而采用不同的工艺。目前预浸料的生产多采用热固性树脂,如环氧树脂,酚醛树脂等。生产工艺主要有溶液法和热熔法。溶液法由工艺中树脂含量难以控制,而且存在污染环境等问题,因此在实际生产中多采用热熔法生产工艺。热熔法预浸料的优点是树脂含量可控,可以生产出规定克重的预浸料,控制精度高,树脂膜均匀性好,预浸料外观好,预浸料挥发份含量少,工艺安全。为了充分发挥碳纤维的增强效果,预浸料中使用的树脂材料一般是综合特效优良的环氧树脂,在一些特殊领域,也是用酚醛树脂和双马来酰亚胺树脂。

3.4.2 SMC

片状模塑料(SMC)是由织物预浸料发展而来的一种薄片状中间成型材料。SMC的成型过程是通过将树脂与短切碳纤维(6-50mm)在两张塑料薄膜之间压成片状(3mm左右的厚度)而得到的一种中间成型材料。首先将树脂均匀涂覆在塑料膜上,然后将切断的纤维散布在涂布面上,在通过压延、脱泡后即可得到SMC成品。

SMC产品目前在企业工业领域使用较广。因为SMC作为一种中间产物,可以进行较长时间的储存,并且SMC对于设计者而言是一种熟悉的材料,现有大部分汽车生产商已经具有SMC部件的制造与使用能力,因而不需要大量的新投资,可以直接替代使用。

3.5 碳纤维复合材料的生产

碳纤维复合材料是指至少有一种增强材料是碳纤维的复合材料。无论形态如何,连续纤维或者短纤维,单向或者多项、编织或者非编织,都是碳纤维复合增强材料,其优异的比强度和比模量性能可以带来明显的耐用度与减重效果。并且,碳纤维作为添加物还可以提高复合材料的导电和导热性能,且由于碳纤维的热膨胀系数非常小,还可以用来提高复合材料的尺寸稳定性。因此,尽管有着固有的脆性,碳纤维还是成为先进复合材料领域中最为重要的增强纤维之一。

碳纤维可以与不同的基体材料(如树脂、陶瓷等)进行复合,形成各种不同的复合材料。其中最常见的是树脂基碳纤维复合材料(CFRP),以其明显的减重增强的作用而广泛应用于航天航空、体育休闲用品以及压力容器、风力叶片、汽车制造、建筑补强等一般工业领域。良好的导热性和接近与零的热膨胀系数,使其在电器领域以及要求尺寸稳定性的空间结构领域也具有无可比拟的优势。

对于碳纤维复合材料而言,可以根据在成型过程中对模具的使用情况将成型方法分为开模成型(手糊成型、喷射成型、缠绕成型、热压罐成型等)、对模成型(树脂传递成型,模压成型,注塑成型,真空袋成型)和其他成型方法(板材层压,连续拉挤成型)三大类,每一类下又具体有很多种不同的成型方法。不同的成型工艺各有优势、劣势以及局限,如果选择的成型工艺不合适,可能会大大增加产品的成本。一般来说, 如果产品尺寸较小,但是需要数量多,最好采用模压成型等可以机械化连续生产的成型方法,如果产品尺寸大、形状特殊,但是需要数量小,可以采用手糊法、热压罐法等,结余两者之间可以采用树脂传递成型法,管道、高压罐等回转体类的部件特别适用于缠绕法。

3.5.1 手糊与喷射成型

作为不主动进行湿式层压,加热加压的成型方法的代表,手糊成型法和喷射成型法是目前较为基础的碳纤维复合材料成型方法。手糊成型法是最早被使用的成型方法之一,可以所是所有成型方法的出发点,不需要特殊装备,成型的产品和大小自由度高, 因而至今仍是很多复合材料制品的首选成型方法。喷射成型法则是先通过切断装置 将纤维切断后,通过喷枪将切断的纤维与树脂一起喷射,使其均匀地沉积在模具上, 算是手糊成型法的一种机械化、省力化的一种改进手段,但是不适用与航空航天等需要高性能材料的应用领域.

3.5.2 模压成型

为了提高手糊成型法中产品的厚度精度和表面品质,在用预浸料等制备成的层合板上加保护膜,然后将其置入模具并在一定温度和压力下硬化的成型方法,即模压成型。模压成型最基本的是冲压,通过冲压形成机来提供压力,可以获得高性能的CFRP 板材和各种形状的产品。作为模压成型的各种延伸和发展出来的新成型技术,有真空袋成型、压力袋成型、热压罐成型等技术。其中热压罐成型是最早开发用于航空结构复合材料制造并仍普遍使用的一种技术,特别是针对于一些大尺寸、形状复杂的制件。热压罐成型工艺流程为:将单层预浸料按预定方向铺叠成的复合材料坯料放在热压罐内,在一定温度和压力下完成固化过程。这种成型工艺采用的原料也是碳纤维预浸料中间体,其具有可固化不同厚度的层合板、可制造复杂曲面零件、使用范围广泛、工艺稳定可靠等优点,但也存在设备投资成本高、工艺生产成本高、制品大小受热压罐尺寸限制等缺点,适用于制造飞机舱门、整流罩、机载雷达罩,支架、机翼、尾翼等产品。

3.5.3 缠绕成型技术

纤维缠绕成型法(filament winding, FW)可以更大程度地发挥补强纤维的强度。其基本操作过程是将连续纤维束在液体树脂中浸渍后,缠绕在模芯上,常温或在炉内加热硬化,脱模后即得产品(湿法缠绕)。与此相对的则是干法缠绕,即使用相应的预浸料再加热的同时进行缠绕。缠绕成型多用于通用级别的管材、容器等圆筒状的产品,如钓鱼竿、高尔夫旗杆以及各种工业用管材、压力容器制品、火箭喷嘴等,也可以用于多边形的飞机部件、风车叶轮等复杂断面物体的成型。

3.5.4 RTM成型技术

树脂转移模塑成型(RTM: Resin Transfer Molding)技术是一种低成本复合材料的制造方法,最初主要用于飞机次承力结构件,如舱门和检查口盖,现已经成为近几年航空航天材料加工、汽车组件装配领域研究最为活跃的方向之一。RTM技术具有高效、低成本、制件质量好、尺寸精度高、受环境影响小等优点,可应用于体积大、结构复杂、强度高的复合材料制件的成型。RTM工艺的主要原理是在模腔(模腔需要预先制作成特定尺寸)中铺放按性能和结构要求设计的增强材料预成形体,在一定压力范围内, 采用注射设备将专用树脂体系注入闭合模腔,通过树脂与增强体的浸润固化成型。它是一种不采用预浸料,也不采用热压罐的成形方法。

RTM主要的派生技术有真空导入模塑工艺、柔性辅助RTM、共注射RTM及高压RTM (HPRTM) 等。其中,HP-RTM采用预成型件、钢模、真空辅助排气,高压注射和高压下完成高性能热固性复合材料的浸渍和固化工艺,实现低成本、短周期(大批量)、高质量生产, 宝马在德国兰茨胡特工厂的碳纤维车身生产便是采用该工艺。HP-RTM可以生产高质 量、高精度、低孔隙率、高纤维含量的复杂复合材料构件,具有生产效率高、数分钟内即可固化、模具产品采用CAD设计、制造容易并可多次使用等优点。

3.5.5 拉挤成型技术

拉挤成型是通过连续的拉拔进行赋形的方法,即是将纤维束在树脂中浸渍后,通过预定内腔型面的模具,以微波加热等手段使其形成迅速进入凝胶化状态,从而实现固化赋型的目的,其典型的型面有圆形、方形、工字型等。

航空设备制造企业JAMCO公司开发出的先进挤压成型(advanced pultrusion, ADP) 技术,是用碳纤维预浸料连续拉挤成型,理论上可以获得任意长度的CFRP材料。这种技术由于可以实现自动化的连续成型,因而加工效率高成本低,可以获得品质优良、内部孔隙率极低并且具有精确尺寸的产品。ADP技术特别适用于具有一定的断面形状(如 C、H、L、Ω等),且长度方向要求非常直的部件的成型,比如客机的主翼、垂直和水平尾翼等。目前,其产品已用于空客A300系列各型号飞机的垂直尾翼以及在A380中用于作为承力结构的二层地板。

3.5.6 注塑成型

注塑成型主要用于短纤维增强热塑性树脂,将调制好的树脂/短纤维混合物等储存在储罐中,在重力的作用下进入套筒,套筒外壁的加热装置将温度加热到树脂的熔点以上,并且螺杆的高速剪切也会产生大量的热量加速树脂的软化和熔解。在螺杆的作用下,物料被集中在套筒的前端,通过喷嘴将其摄入模具,冷却脱模后即可获得成品。目前注塑成型比冲压成型等技术更容易应对复杂形状成型,尺寸精度也很好,容易实现自动化。但由于螺杆的高速转动会对纤维造成一定的损伤,且难以控制纤维的取向性,因此只能获得各向同性的产品。即使如此,注塑成型仍然非常适合具有大规模生产要求,且对力学性能要求不是很严苛的CFRP部件的成型,例如汽车前端板的加工等。

3.5.7 铺放成型技术

一直以来,用于航空航天领域的CFRP构件大多使用预浸料工艺,但是预浸料工艺的成本较高,尤其是预浸料的裁减和铺叠过程,是人工成本和人工时间消耗最大的环节。在欧美等发达国家,由于技术工人的人力成本高昂,该问题尤为突出。并且手工铺叠和裁剪对于大型化和整体化的航天航空复合材料构件而言,无论是从工期保证还是 质量上都难以满足要求。

铺放成型工艺是在纤维缠绕成型工艺的基础上发展起来的全自动制造技术,是自动铺丝成型(automated fiber placement, AFP)技术和自动窄带铺放成型(automated tape layer, ATL)技术的统称。自动铺放技术是由飞机制造商与材料供应商共同研究开发出来的成型技术,其主要目的是通过实现自动化和高速化,完成对大型复合材料部件的成型,提高生产效率、降低生产成本。目前为止,航空航天领域内最大的单一复合材料部件就是通过ATL技术来生产的。由于能够对大型部件一次成型,这也减少了部件的组装成本。正是由于自动铺放技术的出现,CFRP复合材料在商用客机上的规模化应用才能够成为现实。

复材工艺不是不变的,反而,它也会随着技术的发展和市场的拓宽而改变。风电碳纤维的成型技术最早是采用经典的预浸料铺放,这种方法昂贵,且存在生产效率低下, 产品性能差等问题。后来,借鉴玻璃纤维的工艺方法,多层织物真空灌注,但是碳纤维相比玻纤拥有较好的浸润性,导致碳纤维织物在制作的过程中必须留出树脂的流 道,这就导致织物需要特殊的技术,带来了昂贵的成本,另外,织物很难保证在树脂的冲击之下,纤维的直线度,这就直接影响了复合材料的性能。当VESTAS采用了便于大规模生产的拉挤板之后,风电叶片采用碳纤维的用量飞速增长,因为这个技术路线体现了之前工艺不具备的性价比。目前,随着整个风电行业向大型化风机发展,世界各国均开始研发相应的拉挤碳梁技术以应对日益增长的市场需求

本站使用百度智能门户搭建 管理登录
粤ICP备2023121641号